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Abstracts 
 In this paper we give a bound for the zeros of a polynomial with complex coefficients. Our results  generalize 

some known results in addition to giving a way for some new results. 
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Introduction 
An elegant result in the theory of distribution of zeros of polynomials is the following theorem due to Enestrom and 

Kakeya [10]: 

Theorem A: If the coefficients of the polynomial 
j

n

j

j zazP 



0

)( satisfy nn aaaa  110 ......0 , then 

all the zeros of P(z) lie in the closed  disk 1z . 

  In the literature ([2], [4]-[6], [8]-[12]) there exist several generalizations of this result. Aziz and Mohammad [1] 

proved the following generalization of Theorem A: 

 Theorem B: Let 
j
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)(  be a polynomial of degree n with real positive coefficients. If 021  tt can 

found such that         

           )0(1,......,2,1,0)( 11221121   njjj aanjattatta , 

then all the zeros of P(z) lie in 1tz  . 

For 0,1 21  tt , it reduces to Theorem A. 

Aziz and Shah [3] proved the following more general result which includes Theorem A as a special case: 

Theorem C: Let 
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)(  be a polynomial of degree n. If for some t>o, 
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where R is any positive real number, then all the zeros of P(z) lie in 

                                     )
1

,max(
Ra

M
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Recently B. A. Zargar [13]  proved a more general  result which includes Theorem A as a special case. He proved 

Theorem D: Let  
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)( be a polynomial of degree n   such that for some real numbers 

0,0;, 21121  ttttt , 
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where R is a positive real number. Then, all the zeros of P(z) lie in  
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Main results 
In this paper we prove a generalization of Theorem D as follows: 

Theorem 1:Let  
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)( be a polynomial of degree n   with ,jjj ia     nj ,......,2,1,0  such 

that for some real numbers 0,0;, 21121  ttttt , 
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where R is a positive real number. Then, all the zeros of P(z) lie in  
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Remark 1: Taking ,,......,2,1,0,0 njj  , we get Theorem D. 

   Taking 02 t , we get the following generalization of a result of Zargar [13, Cor.4] which includes Theorem A as 

a special case. 

Corollary 1: Let  
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)( be a polynomial of degree n   with ,jjj ia     nj ,......,2,1,0  such 

that for some real number 0t , 
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where R is a positive real number. Then, all the zeros of P(z) lie in  

                                   )
1

,max( 1
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where 
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Lemmas  
For the proofs of the above results , we need the following results: 

Lemma 1:If f(z) is analytic for 1z , f(0)=a, where 1a , bf  )0(  , 1)( zf for 1z , then 
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The inequality is sharp with equality for the function 
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The above lemma is due to Govil, Rahman and Schmeisser [7]. 

 Lemma 2:If f(z) is analytic for Rz  , f(0)=0, , bf  )0(  , Mzf )( for Rz  , then 
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Lemma 2 is a simple deduction from Lemma 1. 

 

Proofs of theorems 
Proof of Theorem 1: Consider the polynomial 
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Then H(0)=0= )0(H   and by using the hypothesis )()( 21

2 MMRzH  for Rz  . 

We first suppose that 

              12121
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Then by applying Lemma 2 to H(z) we get 
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which is true by our supposition. 

Thus, it follows that all the zeros of  G(z) lie in 
r

z
1

 . 

Since )
1

()( 2

z
GzzF n , it follows that all the zeros of  F(z) lie in rz  .  

We now suppose  that  12121

2 )()(  nnn attaRMMRa . 

Then , for Rz  , we have 
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This shows that G(z) has all its zeros in Rz  . 

Since )
1

()( 2

z
GzzF n , it follows that all the zeros of  F(z) lie in 

R
z

1
 .  

But the zeros of P(z) are also the zeros of F(z). Hence, it follows that  all the zeros of  P(z) lie in 
R

z
1

 .  
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Combining the above two arguments, it follows that  all the zeros of  P(z) lie in )
1

,max(
R

rz  .  

That completes the proof of Theorem 1. 
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